Compare commits

...

5 Commits
master ... dev

12 changed files with 483 additions and 53 deletions

2
.cargo/config.toml Normal file
View File

@ -0,0 +1,2 @@
[build]
target = "i686-pc-windows-msvc"

9
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,9 @@
{
// 使 IntelliSense
//
// 访: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{}
]
}

44
Cargo.lock generated
View File

@ -23,6 +23,12 @@ dependencies = [
"cfg-if",
]
[[package]]
name = "equivalent"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5443807d6dff69373d433ab9ef5378ad8df50ca6298caf15de6e52e24aaf54d5"
[[package]]
name = "flate2"
version = "1.0.35"
@ -33,15 +39,50 @@ dependencies = [
"miniz_oxide",
]
[[package]]
name = "foldhash"
version = "0.1.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0d2fde1f7b3d48b8395d5f2de76c18a528bd6a9cdde438df747bfcba3e05d6f"
[[package]]
name = "hashbrown"
version = "0.15.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bf151400ff0baff5465007dd2f3e717f3fe502074ca563069ce3a6629d07b289"
dependencies = [
"foldhash",
]
[[package]]
name = "indexmap"
version = "2.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62f822373a4fe84d4bb149bf54e584a7f4abec90e072ed49cda0edea5b95471f"
dependencies = [
"equivalent",
"hashbrown",
]
[[package]]
name = "loadpe-rs"
version = "0.1.0"
dependencies = [
"lz4_flex",
"object",
"thiserror",
"windows",
]
[[package]]
name = "lz4_flex"
version = "0.11.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75761162ae2b0e580d7e7c390558127e5f01b4194debd6221fd8c207fc80e3f5"
dependencies = [
"twox-hash",
]
[[package]]
name = "memchr"
version = "2.7.4"
@ -63,7 +104,10 @@ version = "0.36.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62948e14d923ea95ea2c7c86c71013138b66525b86bdc08d2dcc262bdb497b87"
dependencies = [
"crc32fast",
"flate2",
"hashbrown",
"indexmap",
"memchr",
"ruzstd",
]

View File

@ -4,12 +4,10 @@ version = "0.1.0"
edition = "2021"
[dependencies]
object = "0.36.7"
lz4_flex = "0.11.3"
object = {version= "0.36.7", features=["default", "write"]}
thiserror = "2.0.9"
[build]
target = "i686-pc-windows-msvc"
[dependencies.windows]
version = "0.58.0"
features=[

View File

@ -5,3 +5,9 @@
```bash
git remote add origin ssh://git@81.70.52.148:17022/asahi/loadpe-rs.git
```
如果使用rust进行壳的开发:
- 压缩程序并生成PE
- 编写shellcode,shellcode依赖:
- 解压缩API
- kernel32.dll中的API

18
src/bin/main.rs Normal file
View File

@ -0,0 +1,18 @@
use loadpe_rs::load_exe;
#[cfg(target_arch = "x86_64")]
const EXE_PATH: &str = r#"E:\work\rust\loadpe-rs\tests\Testx64.exe"#;
#[cfg(target_arch = "x86")]
const EXE_PATH: &str = r#"E:\work\rust\loadpe-rs\tests\Testx32R.exe"#;
fn main() {
match load_exe(EXE_PATH, None) {
Ok(_) => {
println!("Load exe success!");
}
Err(e) => {
eprintln!("Load exe failed: {}", e);
}
}
}

View File

@ -1,5 +1,8 @@
use std::alloc::LayoutError;
use thiserror::Error;
use object::Error as ObjectError;
use object::write::Error as ObjectWriteError;
use windows::core::Error as WindowsError;
#[derive(Error, Debug)]
pub enum LoadPEError {
@ -18,4 +21,14 @@ pub enum LoadPEError {
ReadCStringError(#[from] std::str::Utf8Error),
#[error("LoadLibraryA错误, {0}")]
LoadLibraryError(#[from] WindowsError),
#[error("GetProcAddress错误, {0}")]
GetProcAddressError(String),
#[error("没有重定位表!")]
NoRelocationTable,
#[error(transparent)]
LayoutError(#[from] LayoutError),
#[error("更改内存属性失败!")]
ChangeMemoryProtectFailed,
#[error("写入PE文件失败")]
WritePEError(#[from] ObjectWriteError),
}

View File

@ -1,28 +1,37 @@
use core::alloc;
use errors::LoadPEError;
use lz4_flex::block::compress_prepend_size;
use object::{
bytes_of, bytes_of_slice, endian,
pe::IMAGE_DIRECTORY_ENTRY_IMPORT,
read::pe::{self, ImageOptionalHeader, PeFile32, PeFile64},
LittleEndian, Object, ObjectSection, Pod,
endian,
pe::{
IMAGE_DIRECTORY_ENTRY_BASERELOC, IMAGE_DIRECTORY_ENTRY_IMPORT, IMAGE_SCN_MEM_EXECUTE,
IMAGE_SCN_MEM_READ, IMAGE_SCN_MEM_WRITE,
},
read::pe::{self, ImageOptionalHeader, PeFile32},
write::pe::Writer,
LittleEndian, Object, ObjectSection, SectionIndex, U16Bytes,
};
use std::{
alloc::{alloc, Layout},
fs,
};
use types::CompressPeInfo;
use windows::{
core::PCSTR,
Win32::{Foundation::CloseHandle, System::LibraryLoader::LoadLibraryA},
Win32::System::{
LibraryLoader::{GetProcAddress, LoadLibraryA},
Memory::{
VirtualProtect, PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE,
PAGE_PROTECTION_FLAGS, PAGE_READONLY, PAGE_READWRITE,
},
},
};
pub mod errors;
mod help;
mod types;
/// 加载并启动一个exe文件需要支持命令行参数
///
///
///
///
pub fn load_exe(exe_path: &str, args: Option<Vec<&str>>) -> Result<(), LoadPEError> {
pub fn load_exe(exe_path: &str, _args: Option<Vec<&str>>) -> Result<(), LoadPEError> {
// 1. 检查文件是否存在
if !fs::metadata(exe_path).is_ok() {
return Err(LoadPEError::FileNotFound(exe_path.to_string()));
@ -42,11 +51,15 @@ pub fn load_exe(exe_path: &str, args: Option<Vec<&str>>) -> Result<(), LoadPEErr
.get(endian::LittleEndian);
// 3. 为镜像分配内存
// 分配的内存,后续需要修改内存属性
//
let buf = unsafe { alloc(Layout::for_value(&image_size)) };
// 对齐值一定要写0x1000否则会出现问题
let layout = Layout::from_size_align(image_size as usize, 0x1000)?;
let buf = unsafe { alloc(layout) };
if buf.is_null() {
return Err(LoadPEError::MemoryAllocFailed);
}
dbg!("分配的内存地址: {:?}", buf);
// 进行数据的拷贝。
{
// 拷贝整个头部
@ -88,68 +101,381 @@ pub fn load_exe(exe_path: &str, args: Option<Vec<&str>>) -> Result<(), LoadPEErr
// 从data[pointer_to_raw_data..pointer_to_raw_data + size_of_raw_data]中拷贝数据到buf[va..va + size_of_raw_data]
let section_data = &data
[pointer_to_raw_data as usize..(pointer_to_raw_data + size_of_raw_data) as usize];
unsafe {
std::ptr::copy_nonoverlapping(
section_data.as_ptr(),
buf.add(va as usize),
size_of_raw_data as usize,
);
let dst = (buf as usize + va as usize) as *mut u8;
std::ptr::copy(section_data.as_ptr(), dst, size_of_raw_data as usize);
};
}
// 修复IAT表
{
let import_table = file.import_table()?;
if import_table.is_none() {
// 获取导入表的数据目录
let import_directory = file.data_directory(IMAGE_DIRECTORY_ENTRY_IMPORT);
if import_directory.is_none() {
return Err(LoadPEError::ExecutableWithoutImportTable);
}
let import_table = import_table.unwrap();
// 1. 加载模块
let descriptors = import_table.descriptors().unwrap();
for descriptor_result in descriptors {
// 当descriptor 是Ok(null)的时候表示结束
let descriptor = descriptor_result?;
if descriptor.is_null() {
let base_import_table_rva = import_directory.unwrap().virtual_address.get(LittleEndian);
let mut import_table_index = 0;
loop {
let descriptor = unsafe {
&*((buf as usize
+ base_import_table_rva as usize
+ import_table_index
* std::mem::size_of::<object::pe::ImageImportDescriptor>())
as *const object::pe::ImageImportDescriptor)
};
if descriptor.original_first_thunk.get(LittleEndian) == 0 {
break;
}
let module_name_rva = descriptor.name.get(LittleEndian);
let p_module_name = unsafe {
// 从data[module_name_rva..]中读取一个c风格字符串
data.as_ptr().add(module_name_rva as usize) as *const u8
};
let p_module_name = (buf as usize + module_name_rva as usize) as *const u8;
// 使用LoadLibraryA加载模块
let h_module = unsafe {
LoadLibraryA(PCSTR(p_module_name))
LoadLibraryA(PCSTR::from_raw(p_module_name))
.map_err(|err| LoadPEError::LoadLibraryError(err))?
};
if h_module.is_invalid() {
// 这个逻辑应该走不到
unimplemented!("LoadLibraryA failed");
}
// TODO: 遍历IAT表修复IAT表
// 遍历IAT表修复IAT表
// 加载每一个方法。使用GetProcAddress获取地址。
// 然后修复IAT表。如果其中一个环节出现问题我们应该释放所有加载的Module然后返回错误
// 如果OriginalFirstThunk不存在则使用FirstThunk 的值
let original_first_thunk = descriptor.original_first_thunk.get(LittleEndian);
if original_first_thunk == 0 {
// 获取Image_thunk_data数组的首地址
let base_original_first_thunk_va =
if descriptor.original_first_thunk.get(LittleEndian) != 0 {
descriptor.original_first_thunk.get(LittleEndian)
} else {
// 如果OriginalFirstThunk不存在则使用FirstThunk 的值
descriptor.first_thunk.get(LittleEndian)
};
let base_import_address_table_va = descriptor.first_thunk.get(LittleEndian);
let mut index = 0;
loop {
// 1. 从文件的数据中取出一个ImageThunkData
let origin_thunk_data = unsafe {
#[cfg(target_arch = "x86")]
let thunk_data = &*((buf as usize
+ base_original_first_thunk_va as usize
+ index * std::mem::size_of::<object::pe::ImageThunkData32>())
as *const object::pe::ImageThunkData32);
#[cfg(target_arch = "x86_64")]
let thunk_data = &*((buf as usize
+ base_original_first_thunk_va as usize
+ index * std::mem::size_of::<object::pe::ImageThunkData64>())
as *const object::pe::ImageThunkData64);
thunk_data
};
// 2. 判断是否是最后一个ImageThunkData
let origin_thunk_data_value = origin_thunk_data.0.get(LittleEndian) as u64;
if origin_thunk_data_value == 0 {
break;
}
// 如果不是最后一个,现判断是序号,还是函数名
#[cfg(target_arch = "x86")]
let is_ordinal = origin_thunk_data_value & 0x80000000 != 0;
#[cfg(target_arch = "x86_64")]
let is_ordinal = origin_thunk_data_value & 0x8000000000000000 != 0;
// 函数地址指针
let function_address;
if is_ordinal {
// 如果最高位是10-15位是序号
let ordinal = origin_thunk_data_value as u16;
let pstr = PCSTR(ordinal as *const u8);
// 使用GetProcAddress获取函数地址
let p_function = unsafe { GetProcAddress(h_module, pstr) };
if p_function.is_none() {
// 如果函数地址是null表示获取失败
return Err(LoadPEError::GetProcAddressError(format!(
"GetProcAddress failed, ordinal: {:?}",
ordinal
)));
}
function_address = p_function.unwrap() as *const u8;
} else {
// 否则是名称表的RVA
let name_table_rva = origin_thunk_data_value;
let p_function_name =
(buf as usize + name_table_rva as usize + 2) as *const u8;
// 构造一个PSTR
let p_function_name = PCSTR(p_function_name);
// 使用GetProcAddress获取函数地址
let p_function = unsafe { GetProcAddress(h_module, p_function_name) };
if p_function.is_none() {
// 如果函数地址是null表示获取失败
return Err(LoadPEError::GetProcAddressError(format!(
"GetProcAddress failed, function name: {:?}",
p_function_name
)));
}
function_address = p_function.unwrap() as *const u8;
}
// 修复IAT表
// 需要获取到IAT表的地址
let iat_address = (buf as usize
+ base_import_address_table_va as usize
+ std::mem::size_of::<u32>() * index)
as *mut u8;
// 修复IAT表
// 将函数地址写入IAT表 如果是x86_64需要写入8字节
// 如果是x86需要写入4字节
unsafe {
#[cfg(target_arch = "x86")]
{
*(iat_address as *mut u32) = function_address as u32;
}
#[cfg(target_arch = "x86_64")]
{
*(iat_address as *mut u64) = function_address as u64;
}
}
index += 1;
}
import_table_index += 1;
}
}
// 修复重定向表
{
// 1. 获取重定向表的数据目录
let relocation_table_directory = file.data_directory(IMAGE_DIRECTORY_ENTRY_BASERELOC);
if relocation_table_directory.is_none() {
return Err(LoadPEError::NoRelocationTable);
}
let base_relocation_table_rva = relocation_table_directory
.unwrap()
.virtual_address
.get(LittleEndian);
let mut relocation_offset = 0;
let image_base = file
.nt_headers()
.optional_header
.image_base
.get(LittleEndian);
loop {
// 读取一个IMAGE_BASE_RELOCATION
let relocation = unsafe {
&*((buf as usize + base_relocation_table_rva as usize + relocation_offset)
as *const object::pe::ImageBaseRelocation)
};
// 如果SizeOfBlock为0表示已经到了最后一个IMAGE_BASE_RELOCATION
if relocation.size_of_block.get(LittleEndian) == 0 {
break;
}
// 获取重定位表的VirtualAddress和SizeOfBlock
let virtual_address = relocation.virtual_address.get(LittleEndian);
let size_of_block = relocation.size_of_block.get(LittleEndian);
let base_block = base_relocation_table_rva as usize + relocation_offset + 8;
let block_num = (size_of_block - 8) / 2;
for i in 0..block_num {
// 读取一个TypeOffset
let type_offset = unsafe {
&*((buf as usize
+ base_block as usize
+ i as usize * std::mem::size_of::<u16>())
as *mut u16)
};
// 高四位
let r_type = (type_offset >> 12) as u8;
// 剩余12位
let r_offset = type_offset & 0x0FFF;
// 需要修复的地址偏移
let offset_va = virtual_address + r_offset as u32;
// 若要应用基址重定位,会计算首选基址与在其中实际加载映像的基址之间的差异。 如果在首选基址处加载映像,则差异为零,因此无需应用基址重定位。
// 修复后的值: 按类型
let reloc_offset = buf as usize - image_base as usize;
// 被修复的地址:
let p_address = (buf as usize + offset_va as usize) as *mut u32;
let address_value = unsafe { *p_address };
// TODO: 验证一下是否修复了
match r_type {
0 => {}
1 => {
// IMAGE_REL_BASED_HIGH 基址重定位在偏移量处将差值的高 16 位添加到 16 位字段。 16 位字段表示 32 位单词的高值。
// 取reloc_offset的高16位
let high = (reloc_offset >> 16) as u16;
let new_address = address_value + high as u32;
unsafe {
*p_address = new_address;
}
}
2 => {
// IMAGE_REL_BASED_LOW 基准重定位将差值的低 16 位加到偏移的 16 位字段。 16 位字段代表 32 位字的低半部分。
// 取reloc_offset的低16位
let low = reloc_offset as u16;
let new_address = address_value + low as u32;
unsafe {
*p_address = new_address;
}
}
3 => {
// 如果r_type是3表示这个TypeOffset是一个IMAGE_REL_BASED_HIGHLOW
// 这个时候需要修复一个32位的地址
let new_address = address_value + reloc_offset as u32;
unsafe {
*p_address = new_address;
}
}
10 => {
// IMAGE_REL_BASED_DIR64 基址重定位将差值添加到偏移的 64 位字段。
let new_address = address_value + reloc_offset as u32;
unsafe {
*(p_address as *mut u64) = new_address as u64;
}
}
_ => {
// 其他的类型,暂时不支持
unimplemented!("未实现的重定位类型: {:?}", r_type);
}
}
}
// 计算下一个IMAGE_BASE_RELOCATION的偏移
relocation_offset += size_of_block as usize;
}
}
// TODO: 修复TLS表
{}
// TODO: 修复资源表
{}
// TODO: 修复命令行参数
{}
// 设置节区属性
{
let section_alignment = file.nt_headers().optional_header.section_alignment();
// 遍历节区,设置节区属性
for section in file.sections() {
let va = section.pe_section().virtual_address.get(LittleEndian);
// let size_of_raw_data = section.pe_section().size_of_raw_data.get(LittleEndian);
let section_name = section.name().unwrap();
let virtual_size = section.pe_section().virtual_size.get(LittleEndian);
let characteristics = section.pe_section().characteristics.get(LittleEndian);
let section_va = buf as usize + va as usize;
let section_size = align_to!(virtual_size, section_alignment);
// 设置节区属性
let protect;
if characteristics & IMAGE_SCN_MEM_EXECUTE != 0
&& characteristics & IMAGE_SCN_MEM_READ == 0
&& characteristics & IMAGE_SCN_MEM_WRITE == 0
{
protect = PAGE_EXECUTE.0;
} else if characteristics & IMAGE_SCN_MEM_EXECUTE != 0
&& characteristics & IMAGE_SCN_MEM_READ != 0
&& characteristics & IMAGE_SCN_MEM_WRITE == 0
{
protect = PAGE_EXECUTE_READ.0;
} else if characteristics & IMAGE_SCN_MEM_EXECUTE != 0
&& characteristics & IMAGE_SCN_MEM_READ != 0
&& characteristics & IMAGE_SCN_MEM_WRITE != 0
{
protect = PAGE_EXECUTE_READWRITE.0;
} else if characteristics & IMAGE_SCN_MEM_EXECUTE == 0
&& characteristics & IMAGE_SCN_MEM_READ != 0
&& characteristics & IMAGE_SCN_MEM_WRITE == 0
{
protect = PAGE_READONLY.0;
} else if characteristics & IMAGE_SCN_MEM_EXECUTE == 0
&& characteristics & IMAGE_SCN_MEM_READ != 0
&& characteristics & IMAGE_SCN_MEM_WRITE != 0
{
protect = PAGE_READWRITE.0;
} else {
return Err(LoadPEError::ChangeMemoryProtectFailed);
}
// 设置属性
let mut old_protect = PAGE_PROTECTION_FLAGS(0);
println!("{section_name} va: {:x}, section_size: {:x} address: {:x} characteristics: {:x} protect: {:x}", va, section_size, section_va, characteristics, protect);
let result = unsafe {
VirtualProtect(
section_va as *mut _,
section_size as usize,
PAGE_PROTECTION_FLAGS(protect),
&mut old_protect,
)
};
if result.is_err() {
return Err(LoadPEError::ChangeMemoryProtectFailed);
}
}
}
{
let entry_point = file
.nt_headers()
.optional_header
.address_of_entry_point
.get(LittleEndian);
let entry_point = buf as usize + entry_point as usize;
let entry_point: extern "system" fn() = unsafe { std::mem::transmute(entry_point) };
dbg!("entry_point: {:p}", entry_point);
entry_point();
}
}
Ok(())
}
/// 压缩PE并保存到指定路径
/// 需要注入解压缩的位置无关代码
pub fn compress_pe(pe_data: &[u8], output_path: &str) -> Result<(), LoadPEError> {
// 1. 解析PE文件
#[cfg(target_arch = "x86")]
let origin_pe: PeFile32 = pe::PeFile::parse(pe_data)?;
#[cfg(target_arch = "x86_64")]
let origin_pe: PeFile64 = pe::PeFile::parse(pe_data)?;
// 2. 获取头部数据
let origin_pe_header_data = {
let head_size = origin_pe
.nt_headers()
.optional_header
.size_of_headers
.get(endian::LittleEndian);
&pe_data[..head_size as usize]
};
// 压缩头部数据
let compressed_header_data = compress_prepend_size(origin_pe_header_data);
// 3. 获取节区数据
let section_data = {
let offset = origin_pe
.section_by_index(SectionIndex(0))?
.pe_section()
.pointer_to_raw_data
.get(LittleEndian);
&pe_data[offset as usize..]
};
// 压缩节区数据
let compressed_section_data = compress_prepend_size(section_data);
// 4. 构造压缩后的PE文件
{
let section_alignment = origin_pe.nt_headers().optional_header.section_alignment();
let file_alignment = origin_pe.nt_headers().optional_header.file_alignment();
let compress_info = CompressPeInfo {
header_origin_size: origin_pe_header_data.len() as u32,
header_compress_size: compressed_header_data.len() as u32,
code_origin_size: section_data.len() as u32,
code_compress_size: compressed_section_data.len() as u32,
};
let mut buf = Vec::with_capacity(1024 * 1024);
let is_64 = origin_pe.is_64();
let mut new_pe_writer = Writer::new(is_64, section_alignment, file_alignment, &mut buf);
// 写入DOS头和dos sub
new_pe_writer.write_dos_header_and_stub()?;
// 写入PE头 拷贝一份
let mut new_pe_header = origin_pe.nt_headers().clone();
// 重写节区
new_pe_header.file_header.number_of_sections = U16Bytes::new(LittleEndian, 2);
// TODO: 数据目录中,我还是想要kernel32.dll中的LoadLibraryA和GetProcAddress地址
}
todo!()

14
src/types.rs Normal file
View File

@ -0,0 +1,14 @@
#[repr(C)]
#[derive(Debug, Clone, Copy)]
/// 保存压缩前的原始PE文件信息
pub struct CompressPeInfo {
// 原始PE文件头大小
pub header_origin_size: u32,
// 压缩后的PE文件头大小
pub header_compress_size: u32,
// 原始PE文件代码段大小
pub code_origin_size: u32,
// 压缩后的PE文件代码段大小
pub code_compress_size: u32,
}

BIN
tests/Testx32D.exe Normal file

Binary file not shown.

BIN
tests/Testx32R.exe Normal file

Binary file not shown.

BIN
tests/Testx64D.exe Normal file

Binary file not shown.